a2 United States Patent

Ducharme et al.

US009317449B2

(10) Patent No.: US 9,317,449 B2
(45) Date of Patent: Apr. 19, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

SECURE KEY ACCESS WITH ONE-TIME
PROGRAMMABLE MEMORY AND
APPLICATIONS THEREOF

Applicant: ViXS Systems, Inc., Toronto (CA)

Inventors: Paul D. Ducharme, Richmond Hill
(CA); Wendy Wai Yin Cheung, Toronto
(CA); Albert Yunsang Wong, Toronto
(CA); Shijun Huang, Markham (CA);
Norman V. D. Stewart, Toronto (CA)

Assignee: ViXS Systems, Inc., Toronto (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 218 days.

Appl. No.: 14/048,391
Filed: Oct. 8,2013

Prior Publication Data

US 2014/0136855 Al May 15, 2014

Related U.S. Application Data

Continuation of application No. 12/651,996, filed on
Jan. 4, 2010, now Pat. No. 8,594,333, which is a
continuation-in-part of application No. 12/490,777,
filed on Jun. 24, 2009, now Pat. No. 8,781,127.

Provisional application No. 61/094,541, filed on Sep.
5, 2008.

Int. Cl.

GO6F 12/14 (2006.01)

Ho4L 9/08 (2006.01)

GO6F 21/60 (2013.01)

GO6F 21/62 (2013.01)

(Continued)
U.S. CL
CPC GO6F 12/1408 (2013.01); GOGF 21/602

(2013.01); GO6F 21/6209 (2013.01); GO6F

from OTP memory

Load rule set and key store

21/72 (2013.01); GOGF 21/79 (2013.01); HO4L
9/088 (2013.01); HO4L 9/0822 (2013.01);
HO4L 9/0894 (2013.01); HO4L 9/3247
(2013.01); HO4N 7/1675 (2013.01); HO4N
21/4181 (2013.01); HO4N 21/4183 (2013.01);
HO4N 21/42623 (2013.01); HO4N 21/42692
(2013.01); HO4N 21/4431 (2013.01); HO4N
21/4435 (2013.01); GOGF 2221/2127 (2013.01);
HO04L 2209/12 (2013.01); HO4L 2209/60
(2013.01)
(58) Field of Classification Search

CPC ..ccovvveriivna HO04L 9/0822; HO4L 2209/60

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,091,820 A * 7/2000 AZIZ ...coceoueunnen HO4L 9/0841
380/30
6,996,723 B1* 2/2006 Kyojima HOAL 9/3247
380/45

(Continued)

Primary Examiner — James Turchen
(74) Attorney, Agent, or Firm — Garlick & Markison; Bruce
E. Stuckman

(57) ABSTRACT

A device includes a key store memory that stores one or more
cryptographic keys. A rule set memory stores a set of rules for
accessing the cryptographic keys. A key store arbitration
module grants access to the cryptographic keys in accordance
with the set of rules. The device can be used in conjunction
with a key ladder. The device can include a one-time pro-
grammable memory and a load module that transfers the
cryptographic keys from the one one-time programmable
memory to the key store memory and the set of rules to the
rule set memory. A validation module can validate the cryp-
tographic keys and the set of rules stored in the key store and
rule set memories, based on a signature defined by a signature
rule.

19 Claims, 11 Drawing Sheets

408

Erase nule store and
key store

Pass signature, no, of rules
and no. of keys to software for
second validation H

US 9,317,449 B2

Page 2
(51) Int.ClL 2005/0172132 Al* 82005 Chencccceceevenenne. HO041. 9/0822
GOG6F 21/72 (2013.01) 713/180
GO6F 21/79 (2013.01) 2005/0177741 Al* 82005 Chen ..o HO4L 9/0822
’ 713/189
HO4L 9/32 (2006.01) 2006/0095379 Al* 52006 Kimccccocovnenrne GO6F 21/602
HO4N 7/167 (2011.01) 705/51
HO4N 21/418 (2011.01) 2006/0184796 Al* 82006 Fahmny HO4N 21/4623
HO4N 21/426 (2011.01) 713/176
HO4N 21/443 (2011.01) 2006/0265733 Al* 112006 Chenccceveunnee. GO6F 21/71
726/1
(56) References Cited 2007/0213598 Al* 9/2007 Howard AGIM 5/142
600/300
U.S. PATENT DOCUMENTS 2007/0239605 Al* 10/2007 Munguia GO6F 21/602
705/50
7,096,355 Bl* 82006 Marvit ..o..cooo....... HO4L. 63/0428 2007/0239648 Al* 10/2007 Thotacc..... GOGF 17/2247
380/264 706/47
7,346,169 B2* 3/2008 ASANO ...cooovveveerera. GO6F 21/10 2008/0130895 Al* 6/2008 Jueneman HO4L 9/3066
380/277 380/277
7,979,464 B2* 7/2011 Seidel GOGF 17/30038 2008/0294906 Al* 11/2008 Chang HO4L 9/3263
707/781 713/182
8,522,030 B2* 8/2013 Ng .ccoeovvvivrnenn. HO4L 9/0822 2009/0282261 Al* 11/2009 Khanccccoevenrens HO4L 9/32
713/171 713/189
2004/0088558 Al* 5/2004 Candelore HO4N 7/1675 . .
713/193 * cited by examiner

US 9,317,449 B2

Sheet 1 of 11

Apr. 19,2016

U.S. Patent

} 'Ol

0F Jasibal

Ol

9¢ 8depauI O

01 9o1nep Buikeidsip soydeldb ospia

Z¢ Mowsw
USeli/ysip piey

9z Jaisibal
Ol

¢ 8oepauI O

H

H

H

91 Alowsw
urew

71 youms
fowsw

H

21 8|npow
Buisseooid

871 9|npow

Buissacoid |

soiydesb

0¢ Aowsw
solydesb

US 9,317,449 B2

Sheet 2 of 11

Apr. 19, 2016

U.S. Patent

¢ Ol

¥G s|inpow
uonenigle

0G 210)S
Aoy

2 pabajiaud

8G Juald
aiydeiboydAio

79 suoneoidde
we)shs

9G Juald
aiydeiboydAio

1 09 suoneoydde
A Jasn

0% uoneoldde

US 9,317,449 B2

Sheet 3 of 11

Apr. 19,2016

U.S. Patent

/0] uonoes Jusjuod

GO} uonoas
uoneunsap Jo/pue 83Jnos

TOV uonoss wipuobe

10} |

(101984 [BNIUI ‘pIOM [043U0D ‘ABY)
Z0T adA) Asy oydAno

(1e1siBay ‘003 ‘ysy ‘Aejsndoid

{on)pee) (doaHinan

‘SSD ‘20 ‘ana ‘z-hin

‘$30¢ 'S$33d 'S3V ‘INON 'ANY)
007 wiyobie sydesboydAin

(Ba1 Q| ‘eu01s A& 'SAS ‘g4)
86 uoneunsep

(Ba1 O} ‘a10s A&y ‘SAS ‘g4)
76 92In0s

(¥001q 1g-X)
06 ssaippe

| (w7 |

6 UONEDIPUI M/Y

06 1s8nbau

9°0ld

¢ ol

Asy o1ydesbordian sy

Jo uood e 1ses| Je Buipiebal
uonauny aiydesboydhio

e $3)n29xa a1 oydesboydAio

¥ Old

8|NJ 8] Y)IM 8OUBPIOIVE Ul A3)Y

8

s|ies1sanbal

ou

aydeiBoydAio ey 0) ssedoe
sjuelb sjnpow uoneJigle

4 1

3|nJ e 9A31)31 0) AloWwaw 138
3|N1 8y} SS00R BNPOL UonesjIgIe

i T

1s8nbal pajaidisyul
ue aonpoud o1 15enbal
au 121dJeiul ajnpow uoneniq.e

8. Soh

7

pIfeA s11sanbal 2y} JayIaym SsuIWIaiop
a|npow uonenige

o 1

Aay oydesboydAin
B $58298 0))sanbal
e $9nssI Juaip aydesboydAio

0/

US 9,317,449 B2

Sheet 4 of 11

Apr. 19,2016

U.S. Patent

8 'Ol

Aowaw Jo ¥20|q 8y} ojul Aoy
aiydeiboydAio ayp Jo uoniod e je
ay) ajum 03 uonouny aiydeiboidAio
ay sepnoaxe Juslo alydesboydAi

ﬂ A

Aoy oydesboydAin
ay} Jo uomuod e ises| Je Bunum Joj
AJowaL JO ¥20[q B 0} SS8208 U)IM
alp 0)dAI0 syy sapiaoid Jojenigie

L9l

BIep Juau09 uo Aey aiydesboydAio
a8y Jo uonJod e je sy}
Buiziyn wuuoBie siydeiboydAio
ay) s8)noaxa Jusipd olydesboydAio

ﬁ A

Apuayss |y

4

$S8008 JUBI
aiydeiboydAio 0y Jequinu
Wwopues sapirosd Jojenigie

aIp diydeiboydAio syy 0) Asy
aiydeisboydAio syy Jo uonsod
B 1se9)| Je sapiroid Jojenigie

pIjeA s1isenbal sjum sy) Jayiaym
SaUILIS}aP S|NPOL UoneIIgIe

443

ot

Jaquinu wopue
e sejelauab Joenigle

b

PIjeA S11sanbal peal ay Jayiaym
SOUILLIIEP SNPOLU UoNeIyIg.e

or

US 9,317,449 B2

Sheet 5 of 11

Apr. 19,2016

U.S. Patent

01 "Old

0G aJ01S
Aoy

Gl 8%epajul 410

G Jajsibal

Aoy a1ydesboydAuo
ay) 0) $sa99e Ausp

757 Jeysibal

0G1 Aowsw sjqewweiboid swn-suo

orr

6 'Old

Aoy oyde.bordAio ayy Buissaooe
10} adA) sseo sy 0) Buipuodsaliod
Alepunoq 1iq e ysijqe1ss

adf) ssep e
Ul si wiypobie oiydeiboydAud
10 adhy

1s9nbal ayy woll wyiuobie
oiydesboydAuo jo adAy e Ajnuapl

ovt

US 9,317,449 B2

¢l 'Ol
(A
B[N U} YhIm SOUBPIOIIE
ur ejep pabajiaud sy Jo uonod
© 1SE9)| JE 8y} 0] $$8008 juelB 78 MH
g A

158nbal ay) 101ds9)Ul

A TRES 09] elep
3 pabaaud

¥G 8|npow

uone.igie
s|iey jsanbal

Sheet 6 of 11

Apr. 19,2016

U.S. Patent

Ll
PlleA sl
1sanbal sy} JIaUaYM SUILLIB)EP
a A
20 suoneoydde 00 suoneoydde
1sanbai pajaidizul ay) uo wa)sAs Jasn

paseq AIoWwaw 1S 3jni 8y} $S8008

Q A

ejep peboiaud
8y} Jo uoiuod e se’| e
0] $S8208 10} 1sanbal e anlgd8)

79l

US 9,317,449 B2

Sheet 7 of 11

Apr. 19,2016

U.S. Patent

vl Old

ejep pabajiaud ay) Jo uonlod e
1S3 18 Bunum Joj Aowaw JO %90[q
B 0} $S8008 sapinoid Jojenigle

€l 'Ol

Apusyss ey

761

Jaquinu wopuel
sindjno Jojesjigle

ejep pabajiaud sy Jo uoniod
B Jses| Je sjndjno Jojenigie

981

A

Jaquinu wopue)
e sajelauab Jojesigle

plijeA sijsanbal 8)Lm sy} Jayiaym
SauILIS)ep 8NPOW Uone.IgIe

067

14

~

pIfeA siisanbai peal ay Jaysym
SUILLIB)3P SINPOLU UolR.IGIe

087

US 9,317,449 B2

Sheet 8 of 11

Apr. 19,2016

U.S. Patent

91 Ol

007 eep
pabajiaud

L¢ S0epsUI 410

gl "ol

ejep pabajiaud sy buissaooe
Jo} adAy ssep ayy 0} bulpuodsaliod
A1epunoq 11q e ysijgerse

12 J9)sibal

adfy ssep e
ur st wyuobe
10 adfy

ejep pabojiaud
ay) 0) ssedoe Ausp

T2 Jeisibal

072 Mowaw sjgewwesBoid slun-suo

90¢

1s8nbal sy} wouy
wyobie Jo adA e Ajpuapl

00¢

US 9,317,449 B2

Sheet 9 of 11

Apr. 19,2016

U.S. Patent

— P WEVSY

¥€¢
(Aox)3

Gee sdne(

29¢
‘W 18s 9Ny

¥9¢€ 9npow
uoneniqly

99¢
s|npow
uolepliep

09¢
8|npow peo’

JARDE|
8IC AV
A
8C¢ aAd
7 Y I
WM |
I .
— geEmol | 90¢
92€ S3v —1+H MO
I
. I
) I
I —_
_ ¥0¢
T0E £yl Koy
o
L I
T awoa 1i| _
I 20¢
_ ‘dx3
_ 81BAld
I
| 0%
“ ‘Wal 210s Aoy

US 9,317,449 B2

Sheet 10 of 11

Apr. 19,2016

U.S. Patent

(WINIeameubis)g

8l 'Ol

Skay N ‘S9Iny N

00¢
fowaw

2101s Aoy

‘2inMeubis

™~

99¢
s|npow
uonepifeA

«—>3injeubis

09¢

|NpoW peo

443
d10

29¢
fowaw

19S 9Ny

L/

US 9,317,449 B2

Sheet 11 of 11

Apr. 19,2016

U.S. Patent

PUB 810)S 8|NJ 8SBIT

al01s Aoy

80v

61 'Ol

UOIEPI[eA PU02as
J0J 81emyJos 0] SAey 10 "ou pue
sg|nJ JO "ou ‘aimeubls ssed

90¥ sof

pljeA ale
sAay pue 18s 8Nl i sulwIg)aq

§ A

aineubis ansl)ey

71

Aowew 41O wouy
810)s A8Y pue 18 8jNJ peo

)7

US 9,317,449 B2

1
SECURE KEY ACCESS WITH ONE-TIME
PROGRAMMABLE MEMORY AND
APPLICATIONS THEREOF

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. §120, as a continuation, to the follow-
ing U.S. Utility Patent Application which is hereby incorpo-
rated herein by reference in its entirety and made part of the
present U.S. Utility Patent Application for all purposes:

1. U.S. Utility application Ser. No. 12/651,996, entitled
“SECURE KEY ACCESS WITH ONE-TIME PRO-
GRAMMABLE MEMORY AND APPLICATIONS
THEREOE,” filed Jan. 4, 2010, which claims priority
pursuant to 35 U.S.C. §120, as a continuation-in-part, to
the following U.S. Utility Patent Application which is
hereby incorporated herein by reference in its entirety
and made part of the present U.S. Utility Patent Appli-
cation for all purposes:

2. U.S. Utility application Ser. No. 12/490,777, entitled
“DEVICE WITH PRIVILEGED MEMORY AND
APPLICATIONS THEREOFE,” filed Jun. 24, 2009,
which claims priority pursuant to 35 U.S.C. §119(e) to
the following U.S. Provisional Patent Applications
which are hereby incorporated herein by reference in
their entirety and made part of the present U.S. Utility
Patent Application for all purposes:

a. U.S. Provisional Application Ser. No. 61/094,541,
entitled “METHODS FOR SYSTEM ON A CHIP
CRYPTOGRAPHIC KEY ACCESS AND STOR-
AGE,” filed Sep. 5, 2008.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

NOT APPLICABLE
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates to generally devices that include
memory and more particularly to securing access to the
memory within the device.

2. Description of Related Art

The desire to keep video content of DVD’s (and/or other
copyrighted or proprietary information that is stored in a
digital format) secure from unauthorized use (e.g., unautho-
rized copying, distribution, etc.) is driven by a sector of the
population that places little to no value on the intellectual
properties rights of others. As such, the battle between creat-
ing security systems for digital information and the hackers
that attempt to break them continues.

This battle is intensifying with the integration of electronic
device features being implemented on a single device (e.g.,
computer with DVD functionality) and is further intensified
by video processing hardware being implemented as stand-
alone system on a chip (SOC) devices. In many instances, the
video processing hardware SOC uses an operating system
that allows end users to write their own applications, which
means that the user’s application may share the same proces-
sors and memory space as the security system. This makes the

10

15

20

25

30

35

40

45

50

55

60

65

2

security operations vulnerable. To reduce the vulnerability,
video processing hardware needs to be constrained to per-
forming only specific intended types of cryptographic opera-
tions.

In addition, video processing devices, which include the
video processing hardware SOC, are embedded with licensed
secret keys for compliance with one or more of a plurality of
video application standards (e.g., BD, DTCP, CPRM, Cable
Card, etc.). Typically, such a video application standard
includes a revocation mechanism whereby, if a secret key
value is made public, the security functions of the compro-
mised devices are revoked and the devices are rendered inop-
erable. As such, it is highly desirable that the secret keys are
stored in such a way that they are not accessible to the firm-
ware of the device (in order to avoid revocation). This is
typically done by storing the secret keys in a one-time pro-
grammable (OTP) memory.

While using OTP memory has become a primary mecha-
nism for storing secret keys within video processing devices,
it is not a failsafe approach. For example, a security issue
arises when multiple cryptographic clients (e.g., a hardware
block that performs a specific cryptographic algorithm such
as RSA, TSD, ECC, DMA, etc. . . .) may issue read or write
requests to the OTP memory asynchronously and that the
requests are not atomic. In addition, as a result of granularity
associated with OTP memory large key values are partitioned
into smaller blocks, which have special read/write rules that
are imposed on every block. Thus, it becomes necessary to
associate a macro level restriction on cryptographic clients
down to every micro level block access performed by the
client.

As a specific example, the RSA algorithm can perform a
2048 bit RSA operation, which requires 32 reads of 64 bit
blocks from the key store to assemble the exponent. [fa key is
intended to be used as a 2048 bit exponent, then every 64 bit
block read must be associated with the intended purpose of
the key; i.e. blocks have to have an attribute indicating which
cryptographic client is permitted to access a particular block
associated with a larger key.

Another security problem is that cryptographic strength
often relies on using large keys (e.g., up to 2048 bits for RSA
or 256 bit for some AES modes). However, if the large key is
used one 64 bit block at a time by a weaker cryptographic
client, then large keys may be attacked 64 bits (or less) a time.
Yet another way to attack large keys is to overwrite portions of
the key with 0’s, and then perform the intended operations,
but with the remainder of the weakened key. Every time a
portion of the key is decimated in this way, the remainder can
be determined because portions of the key are now known.

Still further, some cryptographic clients have the ability to
perform operation at various levels of strength; for example,
the RSA can be configured for variable size modulus or 3DES
can be degraded into a DES operation. This can be exploited
by a hacker to perform weaker operations and thereby attack
large keys with degraded operations. Even further, some
cryptographic clients use control words (CWs) and initial
vectors (IVs) within the security operations. The integrity of
a security system may be attacked by usinga CW asanIV in
an operation where the clear text and the CW are known,
which could be used to reveal the CW value.

Another important aspect of maintaining the integrity of
cryptographic operations is controlling the destination of the
cryptographic operation results. For example, content
exported from the SOC poses a far greater risk than content
which is retained within the SOC. Yet another mode of attack
involves using a key, a CW or an IV to decrypt content instead

US 9,317,449 B2

3

of'encrypting the content. For example the intention may beto
encrypt content however a hacker may use a key store value to
decrypt the content.

In addition to the threat of hackers, the security of the
secure content information is at risk from unauthorized public
disclosure. For example, if a disgruntled employee posts the
algorithm and location of the keys on the Internet, the security
of the algorithm is lost. As such, the risk to security systems
is not just from outsider breaking the security of the algo-
rithm, but also from an insider intentionally compromising
the integrity of the security system.

Therefore, a need exists for a security device architecture
that at least partially overcomes one or more of the above
mentioned security issues.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a video graphics display device in accordance with the
present invention;

FIG. 2 is a schematic block diagram of an embodiment of
a device in accordance with the present invention;

FIG. 3 is a schematic block diagram of another embodi-
ment of a device in accordance with the present invention;

FIG. 4 is alogic diagram of an embodiment of a method for
accessing a cryptographic key in accordance with the present
invention;

FIG. 5 is a diagram of an example of a request in accor-
dance with the present invention;

FIG. 6 is a diagram of an example of a rule in accordance
with the present invention;

FIG.7 is alogic diagram of an embodiment of a method for
processing a read access request to a cryptographic key in
accordance with the present invention;

FIG. 8 is alogic diagram of an embodiment of a method for
processing a write access request to a cryptographic key in
accordance with the present invention;

FIG.9 is alogic diagram of an embodiment of a method for
interpreting a request to a cryptographic key in accordance
with the present invention;

FIG. 10 is a diagram of an example of a one-time program-
mable memory in accordance with the present invention;

FIG. 11 is a schematic block diagram of another embodi-
ment of a device in accordance with the present invention;

FIG. 12 is a logic diagram of an embodiment of a method
for accessing privileged memory in accordance with the
present invention;

FIG. 13 is a logic diagram of an embodiment of a method
for processing a read request to access privileged memory in
accordance with the present invention;

FIG. 14 is a logic diagram of an embodiment of a method
for processing a write request to access privileged memory in
accordance with the present invention;

FIG. 15 is a logic diagram of an embodiment of a method
for interpreting a request to access privileged memory in
accordance with the present invention;

FIG. 16 is a diagram of another example of a one-time
programmable memory in accordance with the present inven-
tion;

FIG. 17 is a diagram of an example of a key ladder in
accordance with the present invention;

FIG. 18 is a diagram of an example of a device in accor-
dance with the present invention; and

10

15

20

25

30

40

45

50

55

60

65

4

FIG. 19 is a logic diagram of an embodiment of a method
for loading and validating keys and rule sets in accordance
with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a schematic block diagram of an embodiment of
a video graphics display device 10 that includes a processing
module 12, a memory switch 14, main memory 16, a graphics
processing module 18, graphics memory 20, a hard disk and/
or flash memory 22, and input/output (IO) interfaces 24 and
26. Each of the IO interfaces 24 and 26 includes an 1O register
28 and 30, respectively. Note that the video graphics display
device 10 may be a computer, a laptop computer, a DVD
player, a portable digital audio/video player, etc. and may
include multiple 10 interfaces 24 and 26. Further note that
each 10 interface 24 and 26 may include a plurality of 10
registers 28 and 30.

The processing module 12 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module may have an
associated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that
when the processing module implements one or more of its
functions via a state machine, analog circuitry, digital cir-
cuitry, and/or logic circuitry, the memory and/or memory
element storing the corresponding operational instructions
may be embedded within, or external to, the circuitry com-
prising the state machine, analog circuitry, digital circuitry,
and/or logic circuitry. Further note that, the memory element
stores, and the processing module executes, hard coded and/
or operational instructions corresponding to at least some of
the steps and/or functions illustrated in FIGS. 1-16.

Inan example of operation, one or more of the IO interfaces
receives an instruction to display a video file. The video file
may be from a DVD, stored in the hard disk and/or flash
memory, received from a satellite receiver, received from a
cable set top box, and/or any other source of video content
data. Note that the one or more of the IO interfaces 24 and/or
26 may receive the video file. The video file is encrypted using
a particular encryption program and one or more crypto-
graphic keys as prescribed by one or more video standards.

In this example, the processing module 12 coordinates the
retrieval of the video file from the main memory 16, the hard
disk and/or flash memory 22, the 10 interface 24 and/or 26,
and/or other source. The encrypted video file may include
video data, audio data, video graphics data and/or any other
type of data requiring security. The processing module 12
evokes a cryptographic client algorithm (e.g., RSA, DES,
etc.) and retrieves a cryptographic key from a secure memory
location (e.g., a privileged memory). The secure memory
location will be described below with reference to one or
more of FIGS. 2-16.

The processing module 12 decrypts the encrypted data
using the cryptographic client algorithm and the crypto-
graphic key to produce decrypted data. The decrypted data is

US 9,317,449 B2

5

provided the graphics processing module 18. The video
graphics processing module 18 may be a video graphics card,
a video graphics engine, a video graphics processor, a com-
bination thereof, and/or any other device for rendering video
data. In this example, the graphics processing module 18
converts the decrypted data into video data and stores it in the
graphics memory 20 for subsequent display.

The video graphics display device 10 has three classes of
memory access. The most secure class allows access to the
system memory (e.g., main memory 16 and/or the hard disk
and/or flash memory 22) and to 1O devices via the 1O inter-
faces 24 and 26; allows access to the graphics memory 20
(e.g., frame buffer); and allows access to the secure memory
location. The next level of secure access allows access to the
system memory and to IO devices via the IO interfaces 24 and
26. The third access level allows access to system memory.

FIG. 2 is a schematic block diagram of an embodiment of
a device that includes a hardware (HW) section 32 (e.g., the
processing module 12, the memory switch 14, the graphics
processing module 18, 10 interfaces 24 and 26, etc.) and a
software (SW) section 34 that is stored in the system memory
(e.g., main memory 16 and/or the hard disk and/or flash
memory 22). The software section 34 includes one or more
operating systems (OS) 36, application programming inter-
face (API) section 38, an application section 40, and a privi-
leged section 42. The software section 34 may be stored in the
memory of device (e.g., the main memory 16, the graphics
memory 20, the hard disk/flash memory 22, and/or the 10
registers 28 and 30 of device 10). The privileged memory
section 42 may be within the memory of the device and/or
within a one-time programmable memory.

FIG. 3 is a schematic block diagram of another embodi-
ment of a device that includes the hardware section (HW) 32
and the software section (SW) 34. In this embodiment, the
software section 34 includes application section 40, an oper-
ating system 36, and the privileged section 42. The applica-
tion section 40 includes a plurality of user applications 60, a
plurality of system applications 62, and a plurality of crypto-
graphic client applications 56-58. The plurality of crypto-
graphic applications includes two or more of AES (advanced
encryption standard), DES (data encryption standard), 3DES,
Multi-2 encryption, DVB (digital video broadcasting), C2
(cryptomeria cipher), CSS (content scramble system), MDMI
(HDCP), 1394(M6), RSA, ECC (elliptical curve cryptogra-
phy), Register, any variations thereof, any further versions
thereof, and/or any new encryption standards or techniques.

The privileged memory section 42 may be implemented
using one or more one-time programmable (OTP) memories,
RAM, and/or ROM. The OTP memory may be used to store
a default set of the cryptographic keys and a rule set section
52. The key store section 50 stores one or more cryptographic
keys for one or more of the cryptographic clients in an OTP
memory, RAM, and/or ROM. The key store section 50 may
include memory blocks, where one or more blocks store a
cryptographic key. The rule set section 52 stores rules for
accessing the key store section 50. The various rules will be
described in greater detail with reference to at least some of
FIGS. 4-16.

The device of FIG. 3 also includes an arbitration module
54, which may be part of the operation system 36, stored in
the privileged memory 42, and/or a separate module (e.g., a
stand-alone state machine, a stand-alone processor, etc.).
Regardless of its location, the arbitration module coordinates
access to the key store section 50 based on the rule set. In this
manner, access requests must come from authorized firmware
components (e.g., real cryptographic clients) and the request
must be in a specific manner based on the identity of the

20

25

30

40

45

55

6

requestor as delineated in the rule set. If either fails (e.g.,
unauthorized requestor (e.g., firmware being manipulated by
a hacker) or invalid request manner), the arbitration module
54 will deny the request, ignore the request, or provide ran-
dom data in response to the request.

With such an embodiment, the security of a hardware sys-
tem and the flexibility of a software system are substantially
achieved. For instance, by utilizing a single OTP to store
permanent rules for accessing the keys, the vulnerability of a
software system is substantially avoided and the inflexibility
of a hardware system, which uses hard wired single function
for a single standard, is also substantially avoided.

FIG. 4 is alogic diagram of an embodiment of a method for
accessing a cryptographic key that begins at step 70 where a
cryptographic client issues a request to access a crypto-
graphic key of the cryptographic keys. The request should be
in a specific format that includes a read/write indication, an
address of the at least a portion of the cryptographic key, a
source or destination of the cryptographic result, and identi-
fication of a cryptographic algorithm corresponding to the
cryptographic function if the source is adjacent to the desti-
nation and is the key store content is a Key/CW or an IV. The
method then proceeds to step 72 where a key store arbitration
module 54 determines whether the request to access the cryp-
tographic key is valid. For example, if the request is not from
an authorized entity (e.g., firmware implementing a function
such as a cryptographic client), the arbitration module will
indicate that the request is not valid. As such, a hacker’s
attempt to access the key store section will be invalid and will
fail as shown at step 76.

If, however, at step 74 the request is determined to be valid,
the method continues at step 78 where the arbitration module
interprets the request for access to the cryptographic key to
produce an interpreted request. This will be described in
greater detail with reference to FIG. 9. The method continues
at step 80 where the arbitration module accesses the rule set
memory based on the interpreted request to retrieve a rule of
the set of rules. An example of a rule will be described with
reference to FIG. 6.

The method continues at step 82 where the arbitration
module grants access to the cryptographic key in accordance
with the rule. Note that the rule set may indicate that the
access is not to be granted, as such, in accordance with the
rule includes denying the request, ignoring the request, or
providing random data. The method continues at step 84
where, when access to the cryptographic key is granted, the
cryptographic client executes a cryptographic function
regarding at least a portion of the cryptographic key to pro-
duce a cryptographic result.

FIG. 5 is a diagram of an example of a request 90 that
includes a read/write (R/W) indication 92, an address 96, a
source 97, a destination 98, identity of the cryptographic
algorithm 100 (e.g., ID of the cryptographic client), and the
cryptographic key type. If the R/W indication 92 is for write
request, the request will also include the data 94 (e.g., a
cryptographic key, a code word, or an initial vector) to be
written. The address section 96 indicates the starting address
of'a block of x-bits (e.g., 64 bits).

The source section 97 indicates an initiator of the crypto-
graphic result and the destination section 98 indicates where
the cryptographic result will be sent. The valid sources and
destinations include the system main memory, the key store
section, the 10O registers, and/or the graphics memory. The
cryptographic algorithm being used may be identified as
ANY, NONE, AES, DES, 3DES, Multi-2, DVB, C2, CSS,
MDMI (HDCP), 1394(M6), RSA, ECC, and/or Register.

US 9,317,449 B2

7

In an embodiment, an adjacent rule may be used. For
instance, when a particular client initiates an encryption
operation, the Rule Store determines what Key blocks in the
Key Store can be accessed. By the improvement a further bit
is included in the Rules whereby when the Rule is imple-
mented, it determines the order in which the Key Store blocks
may be accessed. More restrictively, a particular sequence of
blocks is prescribed. Less restrictively, groups of Key Store
blocks are accessed in a prescribed order.

FIG. 6 is a diagram of an example of a rule 101 of a set of
rules. The rule 101 includes an algorithm section 103, a
source and destination section 105, and a content section 107.
The algorithm section 103 identifies a valid algorithm that is
entitled to access the key store section via a read request
and/or a write request. For the given algorithm and request,
the destination section 105 indicates one or more valid desti-
nations that this algorithm may send its cryptographic result.
The content section 107 identifies a valid cryptographic key
type (e.g., a cryptographic key, a control word, and/or an
initial vector).

In an embodiment, the rule store section 52 contains bit
masks associated to Key Store blocks. The Bit Mapping for
rules is as follows:

Field
Read Algorithm See Algorithm List
Write Algorithm: See Algorithm List
Destination 110b =FB
101b = SYS, /IO
011b =Key_ Store
000b = no output
Content Type 1b = CW or Key
O0b =1V
Source 110b =FB
101b = SYS, /IO
011b =Key_ Store
000b = no output
Adjacent 0 = unrestricted,
1 = must be Adjacent
Note:
if Algorithm = ANY then Bits {8, . . ., 15} are the rule is ignored.
Algorithm Description
ANY Any Algorithm is permitted (note 00000b = OTP
default).
AES ECB, CBC, CTR, OFB, CFB
CSS
DES,2DES ECB, CBC
3DES ECB, CBC
Multi-2
DVB
C2
MDMI (HDCP)
RSA
ECC
Register I/F Register Interface
Reserved
Reserved
NONE No Algorithm may access block.

In this embodiment, a rule is a group of bits (e.g., 16) which
dictates how a corresponding block (e.g., 64 bits) in the key
store may be accessed. By default, since all bits in the OTP
default to 0, the blocks that have un-initialized rules provide
unlimited access (i.e. no restrictions).

With respect to an adjacent rule: it provides certain cryp-
tographic clients the ability to write the result of a crypto-
graphic operation back into the key store 50. This is may be

20

25

30

35

40

45

50

55

60

65

8

useful in cases where the security system makes use of key
ladders (e.g., a structure where a key is used to decrypt an
encrypted key, the resulting decrypted key may then be used
in a subsequent key ladder step or it may be used to decrypt
content) and where the key is used to decrypt content is itself
the end product of several cryptographic operations. In this
context, the adjacent rule is used to enforce a particular order
to be adhered to when deriving the key (i.e. the 1°" key must be
adjacent to step 1 which must be adjacent to step 2, etc. . . .)
where the last step of the ladder culminates with the key
intended to decrypt content. Note that the adjacent rule field
more than 1 bit to indicate a range of adjacent locations (e.g.,
5 bits to provide 32 adjacent locations). For example, instead
of the result or an operation being permitted to be written to
just the next (i.e. adjacent) location the rule has extra bits
allocated that define the permission to write the result to the
next N blocks (i.e. a plurality of adjacent locations). This adds
flexibility when dealing with a multi stream system where
multiple end keys are calculated using the same ladder.

FIG. 7 is alogic diagram of an embodiment of a method for
processing a read access request to a cryptographic key that
begins at step 110 where the key store arbitration module
determines whether the request to read the cryptographic key
is valid. This may be done by determining whether the
requestor is authorized to make a request or in accordance
with the rule set. If, at step 112, it is determined that the
request is not valid, the method continues at step 114 where
the arbitration module return a random number. The method
then continues at step 116 where the arbitration module pro-
vides the cryptographic client access to the random number.

If the request is valid, the method continues at step 118
where the arbitration module provides at least a portion of the
cryptographic key to the cryptographic client. For example,
the key may be stored in multiple blocks and the arbitration
module provides some or all of the blocks the cryptographic
client in response to one request. The method continues at
step 120 where the cryptographic client executes the crypto-
graphic algorithm utilizing the at least a portion of the cryp-
tographic key on content data to produce encrypted data or
decrypted data. Note that, in an embodiment, even though a
cryptographic client may make multiple requests and get
portions of the key, it typically will use the entire key for a
cryptographic operation.

FIG. 8is alogic diagram of an embodiment of a method for
processing a write access request to a cryptographic key that
begins at step 122 where the arbitration module determines
whether the request to write the cryptographic key is valid.
This may be done in accordance with a rule of the rule set. If,
at step 124 it is determined that the request is not valid, the
method continues at step 126 where the request fails silently
(e.g., no response is given, the request is ignored), or an error
status is provided.

If, however, the request is valid, the method continues at
step 128 where the arbitration module provides access to a
block of memory in the key store memory for the at least a
portion of the cryptographic key for the cryptographic client.
The method continues at step 130 where the cryptographic
client executes the cryptographic function to write the at least
a portion of the cryptographic key into the block of memory.

FIG. 9 is alogic diagram of an embodiment of a method for
interpreting a request to a cryptographic key that begins at
step 140 where the arbitration module identifies a type of
cryptographic algorithm from the request to access the cryp-
tographic key. For example, cryptographic algorithms may be
grouped into type categories. As a specific example, a first
type may include ANY, DES, DVB, C2, CSS, M6, Multi-2,

US 9,317,449 B2

9
HDCP, Register; a second type may include AES, 3DES,
ECC; a third type may include RSA; and a fourth type many
include NONE.

The method branches at step 142 depending on whether the
type of cryptographic algorithm is in a class type of a plurality
of class types. If not, the method continues at step 146 where
the request is denied. If, however, the type is in a class, the
method continues at step 144 where the arbitration module
establishes a bit boundary corresponding to the class type for
accessing the cryptographic key. For example, If
Algorithm={ANY, DES, DVB, C2, CSS, M6, Multi-2,
HDCP, Register} then the Key Store may be accessed on a 64
bit boundary; If Algorithm={ AES, 3DES, ECC} then the Key
Store may be accessed on a 128 bit boundary; If
Algorithm={RSA} then the Key Store may be accessed on a
1024 bit boundary; and If Algorithm={NONE} then the Key
store may be not be accessed on any boundary.

FIG. 10 is a diagram of an example of a one-time program-
mable memory 150 that includes an OTP interface 152, and a
plurality of registers associated with the key store 50. In an
embodiment, the OTP area (16K bits) is used to record Keys,
CWs and IVs and various other values organized as 256
blocks of 64 bits each.

There is an OTP programming Interface which corre-
sponds to a set of registers which permit reading or write 64
bits at a time into a specific OTP block. For every block there
are 2 bits of associated OTP memory (i.e. the Read Lock Out
Bits {0, . . . 255} and the Write Lock Out Bits {0, . . . 255}.
These bits default to =0 (factory default) and may be pro-
grammed one time to =1. Once the bit is set to =1 it may never
be re-programmed to a =0. When the corresponding read lock
out bit is set form a =0 to a =1 then the associated 64 bit OTP
block may never be read via the register interface. When the
corresponding write lock out bit is set form a =0 to a =1 then
the associated 64 bit OTP block may never be written via the
register interface.

This is a fundamental interlock required to secure secret
values into the hardware device. There are a few scenarios;

Read Write
Lock Lock
Out Out Use Case
0 0 In this case a block of OTP may be left completely
unlocked and may be programmed in the field or at the
factory with non security critical information.
0 1 In this case a block of OTP may be write protected but not
read protected. A typical use for this scenario is to record a
MAC address which is not secure (i.e. may be read) but
should not be overwritten.
1 0 In this case a block of OTP is read protected but left write

able. A typical scenario for this is to provide a mechanism
to revoke a system i.e. allow a Key to be over written in the
field.

I this case a block of OTP is read and write protected. A
typical scenario for this is to record keys within the OTP
and disable f/'w form ever reading or overwriting the key.

Note that even if an OTP block’s read write lock out bits are
set the block may still be used by a cryptographic client within
the hardware device (i.e. H/W blocks may use the key values
to perform a cryptographic operation but the value itself may
never be exposed).

During the initial writing the cryptographic key to the key
store memory at step 50 from the OTP, the copy may utilize an
obfuscation function. For example, blocks of 64 bits (i.e.
Block[j]) which are to be written to the OTP (i.e. OTPJ[i]) are
obfuscated using a function comprising symmetric binary

15

20

40

45

50

55

60

65

10
operators (OP[n]) and a re-mapping function (i.e. [j]—=[i]—=
[iD. The obfuscation function h() may be defined as follows:

OTP[i]=HKB[x]OP[y]|Block[z/

The corresponding reverse-obfuscation function h™'()
implemented between the OTP and the Key Store uses the
following obfuscation function.

KeyStore[z]=OTP[{|OP~! jyJHKB/[x]

Note that h() is a [jJop[j]—[i] mapping and h=*() is a [i]op
[j1—=[j] mapping which means that the bit ordering in the
Block|] and the HKBJ[] are different i.e. if a hacker had
access to the Block value and the HKB value then the bit
ordering would not correspond.

An obfuscation key block may be a 64 bit pattern written
into one or more blocks of the OTP. The obfuscation key
block may default to 0x0 . . . 0 and may be programmed
uniquely per chip, or uniquely per customer, or uniquely per
product or may default to 0x0 . . . 0. In addition, the obfusca-
tion key block should have a similar number of 0’s as 1’s
(+/-10%) (i.e. non trivial value) to ensure secure obfuscation.

The obfuscation functions may be used to secure the key
store loading stage of secure key deployment. It allows for a
secure way to embed keys in to OTP memory. This provides
an important operational security mechanism which secures
cryptographic values within the OTP and provides some secu-
rity in the factory environment.

FIG. 11 is a schematic block diagram of another embodi-
ment of a device that includes the hardware section (HW) 32
and the software section (SW) 34. In this embodiment, the
software section 34 includes application section 40, an oper-
ating system 36, and the privileged section 42. The applica-
tion section 40 includes a plurality of user applications 60 and
a plurality of system applications 62.

The privileged memory section 42, which may be imple-
mented using one or more one-time programmable memo-
ries, includes a privileged data section 160 and a rule set
section 1622. The privileged data section 160 stores data that
is of a privileged nature and should not be accessible to a user
of the device or to a hacker. Such data includes one or more
cryptographic keys for one or more of the cryptographic
clients, other device security features, etc. The privileged data
section 160 may include memory blocks, where one or more
blocks store a privileged data element. The rule set section
162 stores rules for accessing the privileged data section 160.

The device of FIG. 11 also includes an arbitration module
54, which may be part of the operation system 36, stored in
the privileged memory 42, and/or a separate module (e.g., a
stand-alone state machine, a stand-alone processor, etc.).
Regardless of'its location, the arbitration module coordinates
access to the privileged data section 160 based on the rule set.
In this manner, access requests must come from authorized
firmware components (e.g., real cryptographic clients, oper-
ating system firmware functions, other device security func-
tions, etc.) and the request must be in a specific manner based
on the identity of the requestor as delineated in the rule set. If
either fails (e.g., unauthorized requestor (e.g., firmware being
manipulated by a hacker) or invalid request manner), the
arbitration module 54 will deny the request, ignore the
request, or provide random data in response to the request.

FIG. 12 is a logic diagram of an embodiment of a method
for accessing privileged memory that begins at step 164
where the arbitration module receives a request for access to
at least a portion of the privileged data. The method continues
at step 165 where the arbitration module accesses the rule set
memory based on the interpreted request to retrieve a rule of
the set of rules. Note that a rule of the set of rules includes an

US 9,317,449 B2

11

algorithm section that identifies one or more valid algorithms,
a destination section that identifies a valid destination, and a
content section that identifies a valid privileged data type.

The method continues at step 166 where the arbitration
module determines whether the request is valid. This may be
done by accessing the rule set based on the requestor and the
type of request (e.g., read privileged data and/or to write
privileged data). In addition, the arbitration module may
verify the format of the request to insure that includes a
read/write indication, an address of the at least a portion of the
privileged data, and an indication regarding use of the privi-
leged data. If any of these checks fail, the request is invalid
and the method proceeds to step 170 via step 168, where the
request fails. If, however, the request is valid, the method
continues at step 172 where the arbitration module interprets
the request to produce an interpreted request. The interpreta-
tion will be described in greater detail with reference to FIG.
15. The method continues at step 176 where the arbitration
module grants access to the at least a portion of the privileged
data in accordance with the rule.

FIG. 13 is a logic diagram of an embodiment of a method
for processing a read request to access privileged memory
that begins at step 180 where the arbitration module deter-
mines whether the request to read is valid. This may be done
by accessing an appropriate rule from the rule set. The method
branches at step 182 depending on whether the request is
valid. If not, the method continues at step 184 where the
arbitration module generates a random number. The method
continues at step 186 where the arbitration module outputs
the random number as the at least a portion of the privileged
data. When the request to read is valid, the method continues
at step 188 where the arbitration module outputs the at least a
portion of the privileged data.

FIG. 14 is a logic diagram of an embodiment of a method
for processing a write request to access privileged memory
that begins at step 190 where the arbitration module deter-
mines whether the request to write is valid. This may be done
by accessing an appropriate rule from the rule set. The method
branches at step 192 depending on whether the request is
valid. If not, the request fails silently at step 194. When the
request to write is valid, the method continues at step 196
where the arbitration module provides access to a block of
memory in the privileged memory for the at least a portion of
the privileged data.

FIG. 15 is a logic diagram of an embodiment of a method
for interpreting a request to access privileged memory that
begins at step 200 where the arbitration module identifies a
type of algorithm from the request (e.g., a system level appli-
cation, an operating system function, a cryptographic algo-
rithm, etc.). The method continues at step 202 where the
arbitration module determines whether the type of algorithm
making the current request is within one of the types of
algorithms. When it is not, the method continues at step 206
where the request is denied. When the type of algorithm is in
a class type of a plurality of class types, the method continues
at step 204 where the arbitration module establishes a bit
boundary corresponding to the class type. For example, a first
class may access the privileged memory a block at a time, a
second class may access the privileged memory x-blocks at a
time, etc.).

FIG. 16 is a diagram of another example of one or more
one-time programmable memories 210 that includes the
privileged data section 1600, an OTP interface 212, and a
plurality of registers 214-216. In an embodiment, the OTP
area (16K bits) is used to record Keys, CWs and [Vs and
various other values organized as 256 blocks of 64 bits each.
There is an OTP programming Interface which corresponds

10

15

20

25

30

35

40

45

50

55

60

65

12

to a set of registers which permit reading or write 64 bits at a
time into a specific OTP block. For every block there are 2 bits
of associated OTP memory (i.e. the Read Lock Out Bits {0, .
.. 255} and the Write Lock Out Bits {0, . . . 255}. These bits
default to =0 (factory default) and may be programmed one
time to =1. Once the bit is set to =1 it may never be re-
programmed to a =0. When the corresponding read lock out
bitis set form a=0to a=1 then the associated 64 bit OTP block
may never be read via the register interface. When the corre-
sponding write lock out bit is set form a =0 to a =1 then the
associated 64 bit OTP block may never be written via the
register interface.

A further embodiment may include an additional multi-bit
field for encrypt/decrypt that specifies whether a crypto-
graphic client is required to perform an encrypt or decrypt
operation (e.g., ANY=00, Encrypt=10, Decrypt=01,
NONE=11). A least constraining state is the 00 (un-pro-
grammed state) and a most constraining state is 11 (None).

Another embodiment may include increasing the size of
the read and write algorithm field from 4 bits to 6 bits to
specify 64 different algorithms, which allows for many more
algorithms to be added.

In another embodiment, a skip function may be used to
reduce the number of one time programming (OTP) steps
required to populate the Key Store by loading one root key
into the Key Store and then having the keys for other sections
of the key ladder calculated from the root rather than having
them all loaded during successive steps of the OTP process. In
this way, certain OTP steps are obviated.

In yet another embodiment, a repeat function may be used
to avoid redundancy. For instance, the OTP block includes an
indicator stored with certain of the Rules in the Rule Store to
indicate whether that Rule is to be repeated to load it in other
locations in the Key Store ladder. Once again, this obviates
the requirement of having an OTP step for every location in
the Key Store ladder.

In a further embodiment, an Encrypt/Decrypt rule may be
used. In particular, a pair of bits are added to each Rule which
signify that the client can encrypt and decrypt (00), that the
client can do one of encrypt and decrypt (1,0) and (0,1), and
that the client can copy, but not encrypt or decrypt, the result
to another location in the Key Store.

In an additional embodiment the adjacency constraint can
be expanded to define additional types such as CW/Key, 1V,
Data, Any, None or other types.

In yet a further embodiment, the type constraint can be
expanded to define a range of adjacency, not just the imme-
diate next.

FIG. 17 is a diagram of an example of a key store in
accordance with the present invention used to implement key
ladder. In particular, a device 325 is shown that incorporates
one or more of the functions and features described in con-
junction with FIGS. 1-16. In particular, the device 325 is used
to implement a key ladder for use in conditional access (CA),
digital rights management (DRM) or other security applica-
tion in conjunction with Rivest, Shamir, Adelman (RSA)
module 324, and Advanced Encryption Standard (AES) mod-
ule 326 on a single system on a chip (SOC). In this example,
a typical broadcast system key ladder is shown where every
deployed CA system has a unique Private RSA key, such as
private exponent 302. The implementation of such a key
ladder on an SOC provides an obvious improvement in secu-
rity and economy since there is now a single SOC device
rather than two or more devices with a communication link
between them. The key ladder itself provides several archi-
tectural security improvements. An important side benefit is
that DRM’s can be implemented using such a key ladders, the

US 9,317,449 B2

13

security level is brought up to the standard typically required
by CA vendors. The various advantages of the present
approach will be apparent to those skilled in the art when
presented the discussion that follows.

In the example shown, an application, utility or other soft-
ware supplies encrypted key 334 and encrypted codeword
336 that are decrypted in the key ladder based on private
exponent 302 to generate codeword 306. The codeword 306 is
used in this example to descramble an encrypted audio/video
(A/V) data 320 such as from a transport stream de-multi-
plexor (TSD) in digital video broadcast module 328 to gen-
erate audio/video data 318 that can be written to a frame
buffer memory.

In operation, key store memory 300 stores cryptographic
keys of the key ladder. This can include prestored keys such as
private exponent 302 used by RSA module 302 to extract key
304 from encrypted key 334. In addition, key store 300, such
as key store 50, can store key 304, and codeword 306 gener-
ated in AES module 326 by decrypting encrypted codeword
336 based on key 304. Rule set memory 362, such as rule set
52, stores a set of rules for accessing the cryptographic keys of
key store 300 used in conjunction with the key ladder. Key
store arbitration module 364, such as arbitration module 54,
operates based on the rules in rules set memory 362 to control
access to key store memory 300. In particular, arbitration
module 364 allows reading and writing the keys stored in key
store memory 300 only in accordance with the set of rules.
Examples of such rules are set forth in conjunction with
FIGS. 4, and 7-9 and otherwise, while specific examples are
presented below.

In a particular embodiment, there is a different set of rules
(constraints) for each of the three portions of the key store
memory 300 which dictate how values in that portion may be
used. The definition of the ladder is based on rules which are
hard coded into one-time programmable memory (OTP) 322
rather than being hard wired into a chip. These constraints
enforce the specific sequence of operations which is equiva-
lent to the security provided by a hard wired key ladder.

For instance, private exponent portion of key store memory
300 has constraints which enforce the value to be loaded from
OTP 322 (Write Rule=OTP), the value may only be used by
the RSA module 324 (Read Rule=RSA), the value may only
be used as a Key (Type=Key), the RSA operation must read a
value E(Key) from the frame buffer (Source=FB) and the
result of the RSA calculation (Key=(E(Key))"EXP mod n)
must be written to the key store memory 300 (dest=KS), the
RSA operation is a Decryption (i.e. E/D=D) the location of
Key 304 must be adjacent to the location of private exponent
302 (adjacent=1).

Similarly, the key portion of key store memory 300 has
constraints which enforce the value to be the result of an
operation of RSA module 324 (Write Rule=RSA), the value
may only be used by the AES module 326 (Read Rule=AES),
the value may only be used as a Key (Type=Key), the AES
operation must read a value E(CW) from the frame buffer
(Source=FB) and the result of the AES calculation (i.e.
CW=AES(E(CW,Key)) must be written to the key store
memory 300 (dest=KS), the AES operation must be a Decryp-
tion (i.e. E/D=D) the location of codeword 306 must be adja-
cent to the location of key 304 (adjacent=1).

In addition, the codeword portion of the key store memory
300 has constraints which enforce the value to be the result of
an operation of AES module 326 (Write Rule=AES), the
value may only be used by the DVB module 328 (Read
Rule=DVB), the value may only be used as a Key
(Type=Key), the DVB operation must decrypt content
received from an 110 device (i.e. source=I/O) and the result-

20

30

40

45

60

14

ing decrypted content must be written to the frame buffer
(dest=FB), the DVB operation must be a Decryption (i.e.
E/D=D) the CW 306 may not be used to derive any furtherkey
store locations (adjacent=NONE).

The rules can also have fields which allow for de-compres-
sion of rule set and key values when loading the rule set
memory 362 and key store memory 300. These constraints are
referred to as the SKIP and REPEAT fields and generally
permit 1:N mapping of OTP 322 storage to key store memory
300 and rule set memory 362. This allows for more optimum
use of OTP 322. Examples of such fields are presented below:

SKIP: In the example discussed above, note that only the

private exponent 302 has a prestored value which is read
from the OTP 322. Itis typical in key ladders for there to
be a root value which is stored within the chip (i.e.
persistent) and subsequent values are derived (i.e. have
no default value). In this case it would be wasteful to
allocate locations in the OTP 322 to record default val-
ues for other locations in the key store memory and so
the SKIP field is used to direct the load module 360 to
skip over locations in key store memory 300 that corre-
spond to derived keys (i.e. don’t initialize them).

REPEAT: In the example discussed above, note that the

granularity of the key store memory may be different for
various algorithms (i.e. DVB 328 uses 64 bit codewords,
AES uses 128 bit keys and the RSA may use 1024 bit
exponents). In order to accommodate the varying granu-
larity the REPEAT field is used to direct the load module
360 to apply the same rule to multiple locations of rule
set memory 362.

As previously discussed, device 325 includes OTP 322 for
storing the prestored key or keys and the set of rules. Load
module 360 controls the loading of key store memory 300
with the prestored key or keys and the rule set memory 362
with the set of rules. In an embodiment of the present inven-
tion, the set of rules includes a signature rule that defines at
signature corresponding to at least one of: the set of rules and
the at least one cryptographic key. The validation module 366
validates, based on the signature, the loading of the prestored
keys in the key store memory 300 and/or the loading of the
rule set memory 362. Further details regarding this aspect of
the invention will be discussed in conjunction with FIGS. 18
and 19 that follow.

While shown in conjunction with descrambling of broad-
cast A/V data, the key ladder shown could likewise be used for
encrypting or decrypting other media data, multimedia data
or other data to be protected. In particular, nearly all CA and
DRM systems may be expressed as a key ladder (i.e. they may
have more or less stages and/or may use different specific
algorithms). The reason for this is that such security systems
are based on a root of trust philosophy where trust is propa-
gated though various stages from most trusted to less trusted.
A key ladder is a natural extension of standard cryptographic
philosophy. There are proprietary systems which operate with
Smart Cards or Cable Cards and use secret algorithms and
undocumented protocols and are usually associated with set
top boxes distributed by Broadcasters where the CA system is
used to control access to only valid customers. On the other
hand, DRM systems are generally based on published stan-
dards like AACS, DTCP, CPRM, etc. These systems use
standard published algorithms and licensed device keys and
are usually associated with consumer electronics devices like
players or networked devices which are distributed as retail
devices. One thing CA and DRM systems have in common is
that they can both be expressed as a key ladder i.e. they have
a root key (usually stored in Non Volatile Memory) which is

US 9,317,449 B2

15

used to cryptographically qualify derived intermediate keys
which are then used to qualify final keys which are used to
de-scramble A/V content.

FIG. 18 is a diagram of an example of a device in accor-
dance with the present invention. In order to make use of the
set of rules and the keys that are stored in OTP 322, these
values must be loaded in a high speed random access device
such as a static random access memory (SRAM). In this
embodiment, rule set memory 362 and key store memory 300
are implement using one or more such memory devices and
load module 360 and validation module 366 are implemented
via state machines, however, other hardware devices can be
used provided that they can be implemented with an appro-
priate level of security.

An obvious point of attack is the storage of rules and keys.
Procedures are put in place to protect against hackers modi-
fying or adding rules or keys. During the loading process,
load module 360 reads the OTP 322 and determines the
number of rules (M), extracts the signature from the signature
rule, and then copies the rule set into the rule set memory 362.
Along with the rules, the load module 360 will also determine
the number of prestored keys (N) and load the prestored keys
into the key store memory 300. When complete, the load
module 360 will report the number of rules M and keys N
which have been loaded to software 375. After the loading is
complete, the validation module 366 will receive the signa-
ture value from the load module 360 and perform a hardware
hash check. For example, the load module 360 can evaluate
the signature of the key store memory 300 and the rule store
memory 362 and compare it against the signature embedded
within the signature rule. If the two signatures do not match
the validation module 366 can take action to disable access to
the keys and the rule set (e.g. erase the key store memory 300
and the rule set memory 362).

If'the keys and rule set are validated, the validation module
366 will also make the signature value available to a software
function 375 to perform a software hash check. The software
function 375 can be a separate utility or embedded in the
operating system, an application or in other software. Soft-
ware 375 can be implemented as a process on a single SOC
that includes the other components presented in conjunction
with FIG. 17 or can run on another device. Software 375 reads
the signature calculated by the load module 360, the number
of'rules M and number of keys N, and uses this information to
construct a message digest and perform a asymmetric signa-
ture of the contents of the key store memory 300 and rule set
memory 362. For example an RSA-based signature check
may be defined as:

Digest=Hash value | #rules| #keys

Signature=Digest"exp mod n
This mechanism allows a trusted authority to define correct
signature and number of rules and keys have been processed
(i.e. to prevent hackers from altering or adding rules or keys).
If this second signature check fails, then the software 375
takes action to disable the system. Note: there are various
possible hash functions and various possible asymmetrical
functions which may be used.

The rule set can include the following special rules which
are used by the load module 360:

End of Rules Rule (EOR): there is a default Rule (ALL
Zeros) which defines the end of rules within the OTP
322. This rule is intentionally set be equivalent to the
default value of'the OTP 322 i.e. in an un-initialized chip
the 1% rule encountered would be an End Of Rules rule
(EOR) indicating there are no rules defined. This mecha-
nism also permits additional rules to be defined after

10

20

25

30

35

40

45

50

55

60

65

16

some rules have been defined i.e. the unused space may
be used to add additional rules after the chip has been
provisioned.

Signature Rule: this is a custom rule which is used to define
the signature of the rules and keys stored in OTP 322. It
is assumed that a typical attack vector would be for a
hacker to attempt to modify the rules in OTP 322 and so
this mechanism is used to define the expected signature
of the contents of the rule set and keys stored into the
OTP 322 thus providing a mechanism to assure the
integrity of rule set and keys as they reside in the OTP
322. The signature algorithms can be CRC32, SHAI,
SHA256, or other block codes, checksums or error
detection algorithm.

NULL Rule: this rule is provided to define an unused rule
which may be used to fill the rule storage in OTP 322, i.e.
to disable the ability to add additional rules after provi-
sioning.

The device architecture of the present invention also pro-
vides the option to implement multiple CA and DRM systems
on the same system on a chip (SOC). This is an important
distinction where a customer could field a system containing
a single SOC which is provisioned with keys and key ladders
which implement more than one CA or DRM system. This
provides the customer with a remarkable economy and flex-
ibility since the CA/DRM systems can share resources and
co-exist at the same time.

It is common in the CA industry to have breaches of secu-
rity. The typical response in this situation in prior art remov-
able CA systems is to distribute new smart cards or cable
cards to customers. These removable CA systems typically
implement a new key ladder or contain new keys. In the
system of the present invention, an ‘End of Rules’ rule can be
implemented that defines un-programmed space in the rule
and key areas of the OTP 322. In the case of a security breach,
itis feasible to download new rules and new keys to update the
OTP 322 of previously fielded SOC chips, in effect down-
loading a new CA or DRM system to previously fielded
systems. This provides the customer with a remarkable
economy and flexibility since the CA/DRM systems can be
renewed without a large expense. The Renewed CA or DRM
system may be downloaded to fielded products via various
communication channels (for example Cable/Satellite/Ter-
restrial RF links, the Internet, or viamedia suchas DVD’s and
BD disks).

It is also common to selectively disable fielded products
usually because they have been identified as being used by
hackers; this is referred to as revocation. Since the architec-
ture of the present invention is based on the contents of OTP
322 and these contents can be used to record unique chip ID’s.
It is possible to identify and disable individual SOC devices.
The hard coded key ladder approach provides new methods
for revoking devices i.e.

Keys may be changed

(i.e. without the new key the SOC stops working)

Key Ladders may be changed

(i.e. without the new Ladder the SOC stops working)

Signature Check

(i.e. without the new Signature the SOC stops working)
In effect since the architecture of the present invention sup-
port renewability, this creates new and flexible methods for
revoking SOC’s.

FIG. 19 is a logic diagram of an embodiment of a method
for loading and validating keys and rule sets in accordance
with the present invention. In particular a method is presented
foruse in conjunction with one or more functions and features
presented in conjunction with FIGS. 1-18. In step 400, at least

US 9,317,449 B2

17

one cryptographic key is loaded from at least one one-time
programmable memory to a key store memory. In addition, a
set of rules from the one-time programmable memory is
loaded in a rule set memory. The set of rules can include a
signature rule that defines a first signature. In step 402, the
first signature is retrieved. In step 404, the validity of the set
ofrules stored in the rule set memory the cryptographic key or
keys stored in the key store memory is determined. In step
408, the key store memory and the rule set memory are
erased, based on a failed validation of at least one of: the set
of rules stored in the rule set memory; and the cryptographic
key or keys stored in the key store memory.

In optional step 406, the number of rules in the set of rules
is determined along with the number of cryptographic keys.
The first signature, and the number of rules in the set of rules
stored in the rule set memory and the number of crypto-
graphic keys stored in the key store memory are passed for
further validation, such as a second security check.

In an embodiment of the present invention, step 404
includes: determining a second signature based on the set of
rules stored in the rule set memory, and the at least one
cryptographic key stored in the key store memory; comparing
the first signature to the second signature; and determining
the failed validation when the second signature does not
match the first signature.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “coupled to” and/or “coupling”
includes direct coupling between items and/or indirect cou-
pling between items via an intervening item (e.g., an item
includes, but is not limited to, a component, an element, a
circuit, and/or a module) where, for indirect coupling, the
intervening item does not modify the information of a signal
but may adjust its current level, voltage level, and/or power
level. As may further be used herein, inferred coupling (i.e.,
where one element is coupled to another element by infer-
ence) includes direct and indirect coupling between two items
in the same manner as “coupled to”. As may even further be
used herein, the term “operable to” indicates that an item
includes one or more of power connections, input(s), output
(s), etc., to perform, when activated, one or more its corre-
sponding functions and may further include inferred coupling
to one or more other items. As may still further be used herein,
the term “associated with”, includes direct and/or indirect
coupling of separate items and/or one item being embedded
within another item. As may be used herein, the term “com-
pares favorably”, indicates that a comparison between two or
more items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.

The present invention has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships

25

40

45

55

60

18

are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

The present invention has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill
in the art will also recognize that the functional building
blocks, and other illustrative blocks, modules and compo-
nents herein, can be implemented as illustrated or by discrete
components, application specific integrated circuits, proces-
sors executing appropriate software and the like or any com-
bination thereof.

What is claimed is:

1. A device for use in conjunction with a key ladder, the
device comprises:

a key store memory operable to store at least one crypto-

graphic key of the key ladder;

a rule set memory operable to store a set of rules for
accessing the at least one cryptographic key in conjunc-
tion with the key ladder;

a key store arbitration module operable to:
interpret a request to retrieve the at least one crypto-

graphic key stored in the key store memory to produce
an interpreted request that indicates a type of crypto-
graphic algorithm;
access the rule set memory based on the interpreted
request to retrieve a rule of the set of rules; and
grant access to the at least one cryptographic key in
accordance with the rule.

2. The device of claim 1, wherein the request to access the
cryptographic key comprises:

a read/write indication;

an address of the at least one cryptographic key;

a destination in the key ladder for a cryptographic result;
and

identification of the type of cryptographic algorithm.

3. The device of claim 1 wherein the set of rules includes a
signature rule that defines at signature corresponding to at
least one of: the set of rules and the at least one cryptographic
key.

4. The device of claim 3 further comprising:

at least one one-time programmable memory; and

a load module, coupled to the at least one one-time pro-
grammable memory and the key store memory, that
transfers the at least one cryptographic key from the at
least one one-time programmable memory to the key
store memory.

5. The device of claim 4 further comprising:

avalidation module, coupled to the key store memory, that
validates the at least one cryptographic key stored in the
key store memory, based on the signature.

6. The device of claim 3 further comprising:

at least one one-time programmable memory; and

a load module, coupled to the at least one one-time pro-
grammable memory and the rule set memory, that trans-

US 9,317,449 B2

19

fers the set of rules from the at least one one-time pro-
grammable memory to the rule set memory.

7. The device of claim 6 further comprising:

a validation module, coupled to the rule set memory, that
validates the set of rules stored in the rule set memory,
based on the signature.

8. The device of claim 1 wherein the set of rules includes at

least one of:

a null rule; and

an end of rules rule.

9. The device of claim 1 wherein the key store memory is
accessed in accordance with a plurality of constraints that
include at least one of:

a type constraint;

an adjacency constraint;

a skip constraint; and

a repeat constraint.

10. A method for use in conjunction with a key ladder, the
method comprises:

storing at least one cryptographic key ofthe key ladder in a
key store memory;

storing a set of rules for accessing the at least one crypto-
graphic key in conjunction with the key ladder in a rule
set memory,

interpreting a request to retrieve the at least one crypto-
graphic key stored in the key store memory the at least
one cryptographic key to produce an interpreted request
that indicates a type of cryptographic algorithm;

accessing the rule set memory based on the interpreted
request to retrieve a rule of the set of rules; and

granting access to the at least one cryptographic key in
accordance with the rule.

11. The method of claim 10, wherein the request to access

the cryptographic key comprises:

a read/write indication;

an address of the at least one cryptographic key;

a destination in the key ladder for a cryptographic result;
and

identification of the type of cryptographic algorithm.

12. The method of claim 10 wherein the set of rules
includes a signature rule that defines at signature correspond-
ing to at least one of: the set of rules and the at least one

cryptographic key.

10

—_
w

25

30

35

40

20

13. The method of claim 12 further comprising:

loading the at least one cryptographic key from at least one
one-time programmable memory to the key store
memory.

14. The method of claim 13 further comprising:

validating the at least one cryptographic key stored in the
key store memory, based on the signature.

15. The method of claim 12 further comprising:

loading the set of rules from at least one one-time program-
mable memory to the rule set memory.

16. The method of claim 15 further comprising:

validating the set of rules stored in the rule set memory,
based on the signature.

17. The method of claim 10 wherein the set of rules

includes at least one of:

a null rule; and

an end of rules rule.

18. The method of claim 10 wherein the key store memory
is accessed in accordance with a plurality of constraints that
include at least one of:

a type constraint;

an adjacency constraint;

a skip constraint; and

a repeat constraint.

19. A device comprises:

a key store memory operable to store at least one crypto-
graphic key;

a rule set memory operable to store a set of rules for
accessing the at least one cryptographic key, wherein the
set of rules includes a signature rule that defines a sig-
nature corresponding to the set of rules and the at least
one cryptographic key;

a key store arbitration module operable to grant access to
the cryptographic key inaccordance with the set of rules;
and

avalidation module, coupled to the key store memory, that
validates the at least one cryptographic key stored in the
key store memory and further validates the set of rules
stored in the rule set memory, based on the signature and
wherein the validation module erases the set of rules
when validation of the set of rules fails.

#* #* #* #* #*

